Rust Secreted Protein Ps87 Is Conserved in Diverse Fungal Pathogens and Contains a RXLR-like Motif Sufficient for Translocation into Plant Cells
نویسندگان
چکیده
BACKGROUND Effector proteins of biotrophic plant pathogenic fungi and oomycetes are delivered into host cells and play important roles in both disease development and disease resistance response. How obligate fungal pathogen effectors enter host cells is poorly understood. The Ps87 gene of Puccinia striiformis encodes a protein that is conserved in diverse fungal pathogens. Ps87 homologs from a clade containing rust fungi are predicted to be secreted. The aim of this study is to test whether Ps87 may act as an effector during Puccinia striiformis infection. METHODOLOGY/PRINCIPAL FINDINGS Yeast signal sequence trap assay showed that the rust protein Ps87 could be secreted from yeast cells, but a homolog from Magnaporthe oryzae that was not predicted to be secreted, could not. Cell re-entry and protein uptake assays showed that a region of Ps87 containing a conserved RXLR-like motif [K/R]RLTG was confirmed to be capable of delivering oomycete effector Avr1b into soybean leaf cells and carrying GFP into soybean root cells. Mutations in the Ps87 motif (KRLTG) abolished the protein translocation ability. CONCLUSIONS/SIGNIFICANCE The results suggest that Ps87 and its secreted homologs could utilize similar protein translocation machinery as those of oomycete and other fungal pathogens. Ps87 did not show direct suppression activity on plant defense responses. These results suggest Ps87 may represent an "emerging effector" that has recently acquired the ability to enter plant cells but has not yet acquired the ability to alter host physiology.
منابع مشابه
At the Frontier; RXLR Effectors Crossing the Phytophthora–Host Interface
Plants are constantly beset by pathogenic organisms. To successfully infect their hosts, plant pathogens secrete effector proteins, many of which are translocated to the inside of the host cell where they manipulate normal physiological processes and undermine host defense. The way by which effectors cross the frontier to reach the inside of the host cell varies among different classes of patho...
متن کاملRXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery.
Effector proteins secreted by oomycete and fungal pathogens have been inferred to enter host cells, where they interact with host resistance gene products. Using the effector protein Avr1b of Phytophthora sojae, an oomycete pathogen of soybean (Glycine max), we show that a pair of sequence motifs, RXLR and dEER, plus surrounding sequences, are both necessary and sufficient to deliver the protei...
متن کاملEntry of oomycete and fungal effectors into plant and animal host cells.
Fungal and oomycete pathogens cause many destructive diseases of plants and important diseases of humans and other animals. Fungal and oomycete plant pathogens secrete numerous effector proteins that can enter inside host cells to condition susceptibility. Until recently it has been unknown if these effectors enter via pathogen-encoded translocons or via pathogen-independent mechanisms. Here we...
متن کاملInternalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen.
Translocation of pathogen effector proteins into the host cell cytoplasm is a key determinant for the pathogenicity of many bacterial and oomycete plant pathogens. A number of secreted fungal avirulence (Avr) proteins are also inferred to be delivered into host cells, based on their intracellular recognition by host resistance proteins, including those of flax rust (Melampsora lini). Here, we s...
متن کاملThe Malarial Host-Targeting Signal Is Conserved in the Irish Potato Famine Pathogen
Animal and plant eukaryotic pathogens, such as the human malaria parasite Plasmodium falciparum and the potato late blight agent Phytophthora infestans, are widely divergent eukaryotic microbes. Yet they both produce secretory virulence and pathogenic proteins that alter host cell functions. In P. falciparum, export of parasite proteins to the host erythrocyte is mediated by leader sequences sh...
متن کامل